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ABSTRACT

This paper presents our results for two microphone arrays such
as “robot head” and “eigenmike” in tasks 1 and 3 of the
LOCATA Challenge. We basically used multiple signal classifica-
tion (MUSIC) based on generalized eigenvalue decomposition with
geometrically-calculated steering vectors which is implemented in
the open source robot audition software HARK (Honda Research
Institute Japan Audition for Robots with Kyoto University). To
deal with the tasks, we added two additional procedures; 1) We
used voice activity detection (VAD) based on a zero cross rate and
power thresholding instead of using HARK-based VAD by peak
power thresholding on the MUSIC spectrum to solve a mismatch
problem produced by the geometrically-calculated steering vectors.
2) We performed Kalman filter based tracking which takes dynamic
changes of the number of sound sources into account. We con-
structed a sound source localization system by combining an online
MUSIC module in HARK and other offline modules of VAD and
tracking with MATLAB. We also proposed three evaluation met-
rics, and analyzed the localization results for the provided evalua-
tion data set using the metrics to clarify the characteristics of the
proposed system. We showed that the performance of sound source
localization is maintained when MUSIC is performed only once in
every 20 frames. This achieved real-time processing for the micro-
phone array of “robot head.”

Index Terms— Sound source localization, MUSIC, voice ac-
tivity detection, sound source tracking

1. OVERVIEW OF THE PROPOSED METHOD

Fig. 1 illustrates the diagram of the proposed system, which consists
of sound source localization, frame-based voice activity detection
(VAD), and sound source tracking. The following sections describe
the algorithms used in these components.

1.1. Sound Source Localization

Sound source localization is one of the most primary functions
in the field of signal processing. We have been developing sev-
eral algorithms based on multiple signal classification (MUSIC).
The original MUSIC algorithm is based on standard eigenvalue
decomposition (hereafter, SEVD-MUSIC) [1], and it can produce
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Figure 1: The diagram of the proposed system.

a high peak for every sound source direction. Since the origi-
nal MUSIC deteriorates when the power of noise is higher than
that of a target signal, it is extended to solve this problem by
noise-whitening and generalized eigenvalue decomposition (here-
after, GEVD-MUSIC) [2].

Let X (w, f) be the observed signal vector at the f-th frame at
the w-th frequency bin generated from multi-channel input signals
by applying short-time Fourier transform (STFT) with the frame
window length W, the window shift length N, and the FFT(fast
Fourier transform) length F'. The correlation matrix R(w, f) is ob-
tained from X (w, f) by,

f+Tr—1

R(w7f) = TL Z X(va)X*(w77-)7 (@)

R

where T'r is the number of frames for temporal integration to cal-
culate the correlation matrix.

SEVD-MUSIC simply performs standard eigenvalue decompo-
sition for the correlation matrix, which is defined as,

R(w, f) = E(w, /)A(w, /) E"(w, f), ()

where A(w, f) is a matrix whose diagonal elements are eigenvalues
in descending order. E(w, f) is a matrix consisting of eigenvectors.
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On the other hand, GEVD-MUSIC takes another input, that is,
a noise correlation matrix K (w, f), and it is estimated using the
first T’ frames of the input signal as,

TN
1 .
K(w) = 7 > X (w, )X (w,7), 3)
T=1

After the whitening process is performed by calculating
K_%(w)R(w,f)K_%(w), GEVD performs eigenvalue de-
composition defined as,

K™% (w)R(w, /)K 2 (w) = E(w, /)Aw, /)E*(w, f), @

The MUSIC spatial spectrum P(w,, f) is calculated using
steering vector G(w, v) as,

|G™ (w,¥)G (w, )]
Zm L+1 |G™ (W, Y)em(w, 2b)|

where 1) is a sound source direction, and L is the number of target
sound sources. e,, shows the m-th eigenvector included in E.

The first L eigenvectors in E correspond to target sound
sources, and others are related to noise sources. When 1) shows
a sound source direction, an inner product of G*(w, 1) and e,
goes to 0 for every m > L + 1 because signal and noise vectors are
orthogonal to each other in the signal space spanned by E;. This
means that the denominator of Eq. (5) becomes 0, and thus a sharp
peak is formed for the sound source direction ¢ in P(w, ), f).

G can be obtained precisely from measurement-based impulse
responses. However, such measurements are not available, and thus,
we calculated G using the geometrical relationship between micro-
phones and sound sources by assuming the free acoustic field.

After that, P(w, ), f) is averaged on w denoted as,

P(w,v, f) = &)

P, f) = H—wL+1Z (@9, ), ©)

w=wr,

where wy, and wy, are the highest and lowest boundary of the fre-
quency bin, respectively.

Finally, P(1, f) is sent to frame-based VAD. Note that eigen-
value decomposition (EVD) in Eq. (2) or (4) is computationally ex-
pensive, and thus, in actual implementation, Eqgs. (2), (4), (5), and
(6) are performed once every T frames. Such implementation is
avaliable in HARK (Honda Research Institute Japan Audition for
Robots with Kyoto University)l[S]. We used these algorithms to
deal with tasks for the LOCATA challenge.

1.2. Frame-based Voice Activity Detection

Sound source direction is usually estimated as ) which has a peak
exceeding a threshold P, in P(1), f). Since this thresholding de-
cides whether a sound exists or not at every frame, it performs
frame-base VAD in addition to the estimation of sound source di-
rection. However, this normal thresholding process causes a prob-
lem when G has a mismatch with the actual steering vectors. As
mentioned above, it is inevitable that there is a mismatch between
the calculated and the actual steering vectors. It produces errors in
a MUSIC spectrum generated from the input acoustic signal. Be-
cause, in our preliminary experiments, the errors affected MUSIC

'https://www.hark. jp/
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Table 1: Parameters of the system with values for the LOCATA
Challenge

General Parameters

Frame window length (W) | 480 points
Window shift length (V) 160 points
FFT length (F') 512 points

Parameters for Sound Source Localization

Localization algorithms SEVD (Eq. (2)), GEVD (Eq. (4))

EVD frequency (1) every 1, 10, 20, 30, 40, 50, 60, 70 frames
Num of sources (L) 1

#frames for correlation 50 frames

matrix (Tr)

#frames for noise 50 frames

correlation matrix (7T'n)

Frequency ranges

(wr, and wg) 500-2,800 Hz, 500—4,000 Hz

125-2,800 Hz, 125-4,000 Hz,125-7,500 Hz

calculated at 5° intervals
in azimuth without elevation

Steering vectors (G)

Parameters for Frame-based VAD

Threshold for ZCR (Th.,) | 1.3 x 102
Threshold for FPR (Th,,) | 3.2 x 10~ ¢
Parameters for Sound Source Tracking
pause length (PL) 0.2 sec
minimum length (M L) 0.1 sec

spectrum generation in low power signal periods like silent parts
compared to that in high power periods where a target signal exists,
we did not use this thresholding on the MUSIC spectrum. Since
evaluation data in tasks 1 and 3 do not include so much noise, we
decided to perform a conventional thresholding algorithm based on
a zero cross rate (ZCR) and frame power rate (FPR) for frame-based
VAD. When s;(t) is an input signal of the i-th channel at time ¢,
ZCR at the f-th frame, Zr(f), is defined by,

M f-N+W-—1

zZr(f) = M v > At )
i=1 t=f-N

FPR at the f-th frame, Pr(f), is defined by,

M f-N4+W-1

NZ > sl ©)

i=1 t=f-N

Pr(f) =

Frame-based VAD is, then, defined by,

1 Zr(f) > Th.rand Pr(f) > Thp,

Vad(f) :{ 0 otherwise. (10)

Once frame-based VAD is performed, at the voice activity peri-
ods, a peak in P(1, f) is extracted as 1. The peak value with v is
sent to sound source tracking.

We implemented the VAD algorithm with MATLAB to be per-
formed as an offline post-process of MUSIC-based localization, al-
though the algorithm itself can be implemented as online processing
because it includes calculation of the zero cross rate and power of
the input signal.
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Figure 2: A result for “task3_recordingl_eigenmike” recorded with the “eigenmike” microphone array in task 3: a) sound spectrogram
obtained by STFT, b) frame power rate with a blue line using a Y-axis on the left side and zero cross rate with a red line using another Y-axis
on the right side, which are calculated by Eqgs. (7) and (9), respectively, c) frame-based VAD results estimated by Eq. (10), d) a sequence of
peak values in MUSIC spectrum with a red line using a Y-axis on the right side and the corresponding azimuth values with a blue line using
a Y-axis on the left side, e) MUSIC spectrogram and the selected peaks with red circles according to the VAD result, f) MUSIC spectrogram

and sound source tracking results with colored lines by Kalman filtering.

1.3. Sound Source Tracking

The frame-based VAD has some parameters, which are basically
manually tuned. However, it is difficult to have the optimal pa-
rameters for all evaluation data. This indicates that the VAD is not
perfect, and thus we further performed Kalman filtering to form a
sound event from the frame-based VAD results, and the Kalman
filtering can also provide sound source tracking. The tracking is
applied only for the azimuth direction using a simple Kalman fil-
ter based on linear motion of uniform acceleration in the time do-
main. Since the number of sound sources is dynamically changing,
0 or 1 in tasks 1 and 3, we introduced two procedures to deal with
the dynamic changes to design the Kalman filtering. One is that
we introduced a parameter called pause length (PL) to decide if a
source is terminated, that is, when no observation is associated with
a tracked source more than PL periods, the source is terminated.
The other is that when no source is found to be associated with an
observation, a new source is generated with the observation. After
that, short sound events among the formed ones are eliminated as
outliers, that is, when the length of the source is less than minimum
length (ML), the source is eliminated. This tracking algorithm
is implemented with MATLAB as another offline post-process of
frame-based VAD. The Kalman filtering can be implemented as on-
line processing, but a delay of the length of the minimum sound
event is unavoidable in the elimination of short events. When we

have an integrated system including all processes mentioned above,
it can be implemented to work incrementally with the delay which
is required in the elimination.

1.4. An example of sound source localization

Fig. 2 depicts an example of sound source localization results with
the proposed system for a file named “task3_recording1_eigenmike”
included in task 3 of the evaluation data set. Fig. 2a) illustrates
sound spectrogram obtained after STFT in Sound Source Localiza-
tion. After that, MUSIC is performed and MUSIC spectrogram is
outputted as background color maps in Fig. 2e) and 2f). From the
MUSIC spectrogram, the peak value is extracted with its direction
at every frame shown as Fig. 2d). In VAD, ZCR and FPR are cal-
culated, which is demonstrated in Fig. 2b). By integration of ZCR
and FPR, VAD is extracted as Fig. 2¢). According to the VAD result
and the extracted peaks in Fig. 2d), peaks are selected as red circles
in Fig. 2e). Note that these circles are not connected in a temporal
direction. Finally, Kalman filtering performed for the red circles,
and sound events are formed as lines in Fig. 2f).

The system has several parameters summarized in Table 1. The
parameter tuning is an important factor to attain high performance
and real-time processing. The cells with multiple values show the
parameters we explored for the tasks in the LOCATA challenge,
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which will be discussed in the next section.

2. EVALUATION

The tests were performed by changing values of the selected ma-
jor parameters, and the obtained results were analyzed with discus-
sions. By assuming that the results with a parameter set (GEVD,
Te =1, wr =125, wg = 4,000 in Tab. 1) are ground truths (here-
after, GTP set), three metrics such as localization accuracy (Lacc
[%] ), coverage accuracy (Tacc [%]), and angle difference (Aprr
[deg]) are defined by,

Cy—1
Lace = NTNN 1n
Cy — I,
Tacce = tN L (12)
t
Aprp = |T|Z|d (n)| (13)
neTe

where C'y and Iy the number of matched and extra detected sound
events, and Ny shows the total number of sound events detected
with the GTP set. Ct, I;, and Ny represent the total durations of
Chn, I, and N,, respectively. T, is a set of the overlapping time
samples included in the matched sound events, of which duration
corresponds to Cy. d(n) and dg(n) represent azimuth angles of
the estimated sound event and ground truth at the n-th time sample.
Note that all data were processed on a laptop computer with an Intel
Core i7-5700HQ 2.7 GHz CPU.

2.1. Comparison of localization methods

Fig. 3 shows the averaged scores of Lacc, Tacc,and Aprr when
EVD frequency T is changed from 1 to 70 for GEVD- and SEVD-
MUSIC. wy, and wg are fixed to 125 and 4,000 Hz, respectively.

It is observed that GEVD and SEVD have the same perfor-
mance. This is aused by a high signal-to-noise ratio (SNR) of audio
data included in tasks 1 and 3. We presume that GEVD will outper-
form when SNR is lower.

L acc is maintained even with large T, but Tacc and Aprr
get worse. This means that T'r affects the detection of sound events
less. However, when we carefully look at each pair of sound events,
that is, the detected sound event and the corresponding sound event
included in ground truth, it can be seen that their correspondence
gets poorer as Tk becomes larger. When we go for sound source
separation and automatic speech recognition, we should consider
a trade-off between fast processing achieved by large Tz and high
localization performance by small 7.

2.2. Comparison of analyzed frequency ranges

The frequency ranges, wr, and wp, were changed in this evalu-
ation. The differences in the three metrics with the results with

(wr;wr) = (125;4,000) were investigated in the following
four conditions; (125;2,800), (125;7,500), (500;2,800), and
(500; 4, 000).

Fig. 4 shows the results. It seems that the performance was not
affected by the changes in the analyzed frequency range when it
comes to L 4cc. However, the results with higher frequencies such
as (500; 2, 800) and (500; 4,000) showed different performances
when we look at T4cc and Aprr. Because the results with almost
full frequency range (125; 7, 500) had similar performance to lower
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Figure 3: Performance comparison of GEVD- and SEVD-MUSIC:
The averaged scores over all files in tasks 1 and 3 were measured
with (wr;we) = (125;4, 000).
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Figure 4: Performance comparison for different frequency ranges:
The averaged scores over all files in tasks 1 and 3 were calculated
using GEVD with T = 1.

frequency ranges such as (125;2,800) and (125;4,000), we can
say that most of the target signal energy is concentrated on lower
frequencies in tasks 1 and 3. With a narrow frequency range, fast
processing can be achieved. On the other hand, the frequency range
should be matched with that of the target signal. This is another
trade-off in sound source localization.

2.3. Comparison for tasks and microphone arrays

Performance differences for all combinations of two tasks and two
microphone arrays were measured. For tasks, we selected tasks 1
and 3. Task 1 includes audio files for a single, static loudspeaker
using static microphones arrays, and task 3 includes a single, mov-
ing talker using static microphone arrays. For microphone arrays.
we selected a 12-channel pseudo-spherical array marked as “robot
head” and a 32-channel spherical array marked as “eigenmike.”
Fig. 5 shows the results. As mentioned before, SNRs in both
tasks are high, and Lacc did not provide significant differences
between tasks and between microphone arrays. However, we ob-
served that the performance dropped as EVD performed less fre-
quently from Tacc and Aprr. When T is less than 30, there was
no difference between the four combinations. However, when T’g
is more than 30, it can be seen that there is a remarkable difference
between “robot head” and “eigenmike.” The results with “eigen-
mike” were quite stable. We can say that this is caused by the fact
that “eigenmike” consists of more microphones. On the other hand,
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Figure 5: Performance comparison for different microphone arrays in tasks 1 and 3: The averaged scores for each combination of task and
microphone array were measured. The frequency range was fixed to (125, 4,000) using GEVD.

there is no difference between tasks 1 and 3. We guess that this is
because sound source motions in the task were not rapid.

The acceptable performance will be when Aprr is less than 5
degrees, because the resolution of the steering vectors is 5 degrees.
In this sense, T’z should be less than 20. For the processing speed,
“robot head” could be processed in real time when 7'z is more than
20. For “eigenmike,” real-time processing was difficult even with
Tr =70. The best solution for “robot head” is that T = 20 when
both performance and processing speed are taken into account.

3. SUMMARY

We presented localization results with an offline system consisting
of GEVD-MUSIC implemented in HARK, zero-cross based VAD,
and sound source tracking with Kalman filtering. For the chal-
lenge, we selected four combinations of task 1 and task 3 with a
32-channel spherical array and a 12-channel pseudo-spherical array.
The localization results were discussed along with three proposed
metrics.

We did not use development data sets, but there is a possibil-
ity to improve the localization performance using steering vectors
adapted from the development data sets. Deep learning methods
can be also another possibility to improve performance [4].
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