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ABSTRACT

Source localization algorithm plays a crucial role for a wide range
of applications in audio signal processing that exploit multiple mi-
crophones. The accuracy of a localization algorithm usually de-
pends on several types of spatial information, such as interchannel
phase differences (IPDs) of a sound signal captured by multichannel
microphone, but this information can be easily degraded by back-
ground noise and reverberations. Until now, no regression model
based on deep neural networks (DNNs) has been reported that deals
with the phase difference in the time-frequency (TF) domain, as the
phase difference has no specific pattern that can be utilized in deep
learning. In this paper, we introduce the phase difference with an
artificial structure (PDAS). The pattern in the PDAS is generated
artificially, but it can be helpful for a DNN regression model. By ex-
ploiting the PDAS, the proposed DNN-based localization approach
reduces distortion caused by interference in a real-world environ-
ment, and achieves a significant improvement in localization accu-
racy. To determine the frame-by-frame directional angle of a sound
source, we find a peak value of each distribution of direction-of-
arrival (DoA) obtained from whole DoA estimates across specific
TF components. Our experimental results show that the proposed
method outperforms a baseline algorithm with respect to determin-
ing the source direction in on-line processing.

Index Terms— source localization, direction-of-arrival estima-
tion, phase difference with artificial structure, deep neural networks

1. INTRODUCTION

Source localization algorithm is important for various types of
speech processing, such as speech enhancement [1, 2, 3], recogni-
tion [4, 5], and so on. Since source localization algorithms usually
consider spatial information, such as the interchannel phase differ-
ence (IPD) or interchannel level difference (ILD), their performance
depends on spatial cues. However, the performance of localization
algorithm can be easily degraded because the information is usually
corrupted by background noises or reverberations.

Thus far, many studies on localization algorithms have focused
on their abilities to deal with various spatial cues to determine the
direction of sound sources [6]-[22]. In this context, the interchan-
nel time difference [6] or IPD [7, 8] represents one of the most im-
portant types of spatial information for subband-based localization.
Some approaches have been used to select reliable components of
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information in the time-frequency (TF) domain to determine the
directions of sound sources [9, 10]. Furthermore, the selected in-
formation can be dealt with by several post-processing techniques,
such as clustering and statistical fitting, in order to improve per-
formance. Although the ILD can be employed as an information
source in localization, its reliability tends to be seriously degraded
according to the distance between the sound source and the micro-
phone. In this regard, a previous study [11] presented a statistical
approach to localization utilizing both the IPD and ILD as a comple-
mentary strategy. To overcome performance degradation caused by
reverberations, direction-of-arrival (DoA) estimators based on on-
set detection [9, 12], in addition to zero-crossing rate analysis, have
been utilized [12, 13]. Various techniques to select reliable spa-
tial information in TF slots have also been described, for example,
a sinusoidal approach [8], coherence tests [9, 14] estimation con-
sistency [10], and signal-to-noise ratio (SNR) analysis [12, 13]. To
determine the directions of sound sources, statistical approaches, in-
cluding mixture models or k-means clustering, have been employed
[9, 10, 14, 15, 16].

Over the last decade, impressive results related to speech pro-
cessing have been derived using deep neural network (DNN). In
[17, 18], a DNNs-based localization approach exploiting subspace
features of well-established baselines, such as MUSIC [19] and ES-
PRIT [20], has reported according to advantages of deep learning.
This approach utilizes eigenvectors and steering vectors as input
data and the weights of the first hidden layer of a network. In
[21, 22], the authors proposed a DNN classification method to de-
termine the DoAs of sources. This tries to mimic how the human au-
ditory system localizes sound sources and shows further improved
performance when taking prior information about interference loca-
tion. However, the performance of these conventional localization
algorithms is hampered by interferences, as they usually use dis-
torted spatial information without any effort related to noise reduc-
tion or dereverberation.

In this paper, we proposed a DNN regression model for source
localization by considering phase difference. For deep learning, the
input and target feature should contain specific patterns, but phase
difference has no distinctive pattern in itself. Thus, phase differ-
ence may be inappropriate for DNNs-based localization algorithm.
To overcome this, we investigate a novel approach of DNN-based
localization utilizing the phase difference with an artificial struc-
ture (PDAS) instead of phase difference. We apply the PDAS in a
DNN regression model to estimate all DoAs in whole TF slots, and
find the peak value for the DoA distribution within specific tempo-
ral periods and frequency bands to determine the direction of the
sound source in on-line processing. It is noted that the proposed
algorithm can reduce distortions in spatial cues caused by back-
ground noises and reverberations while most baseline localization
approaches only utilizes corrupted cues. The experimental results
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Figure 1: TF plots for (left) phase difference and (right) PDAS
in the case of a sound source located in the azimuth direction of
0 = 40°: (Top) “clean and dry” observation and (bottom) “noisy
and reverberant” observation with Babble noise at 5 dB SNR and
RT@O =0.2s.

demonstrate the performance of the proposed method in terms of
the root mean square error (RMSE) and standard deviation about
the DoA estimates compared with the MUSIC algorithm [19] for
recorded speech files under real-world condtions.

2. DNN-BASED DOA ESTIMATION UTILIZING PDAS

In this section, we describe how to generate the PDAS, which has
helpful patterns for deep learning, and propose a novel DNN-based
localization approach that exploits the PDAS. Assuming a far-field
model, we consider a stereophonic speech signal captured by a dual
microphone. For speech signals of stereo channels at temporal in-
dex n, z1(n) and 22 (n), we describe the discrete Fourier transform
(DFT) coefficients of the signals as follows:

2

X1(k,m) = z1(ml + n)w(n)efj%rk", (1)
n=0
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Xa(k,m) = zo(ml + n)w(n)e I NF" )
n=0

where m, [ and N denote the temporal index, frame shift, and DFT
dimension, respectively. The phase difference A¢,(k, m) for k-th
frequency bin in the m-th frame between the two DFT coefficients,
Xi1(k,m) and X2(k, m), can be derived as below:

Ade(k,m) = £(X2(k,m) - X7 (k,m)), 3)

where /(-) and * represent the phase operator of complex coeffi-
cients and complex conjugate, respectively. The directional angle
0. (k, m) is obtained from phase difference A, (k, m) by the ge-
ometric relationship between them.

0 (k,m) =sin™" (%) @)
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Figure 2: A neural network for the PDAS estimation. A¢’, and
Agy, represent the PDAS of the clean and interference-corrupted
speech, respectively.

where ¢, f, and d are the speed of sound, frequency according to k-
th bin index, and distance between two microphones, respectively.

In our DNN-based localization algorithm, which can reduce
distortion caused by background noises and reverberations, we uti-
lize the geometric relationship between the phase difference and
DoA described in (4). In general, the phase difference across whole
TF bins has no specific pattern in itself even though it is obtained
from a noiseless and anechoic conditions. Additionally, the phase
difference is affected by interferences including background noises
and reverberations in Figure 1. As a result, the phase difference of
speech signals is unsuitable for deep learning. To overcome this ob-
stacle, we utilize the PDAS instead of the phase difference in our
regression model. Despite the artficial pattern of the PDAS, it can
be useful in a DNN aimed at reducing interference. We define the
PDAS Ag¢’(k,m) when we have the pitch information in voiced
region, as below:

AY/(k,m) = Ag(k,m) + i, ®)

where i represents the closest harmonic index to k£ and « is a tun-
able parameter, and we select « as unity, which can represent the
simplest pattern of the PDAS for deep learning. The PEFAC al-
gorithm in [23] is utilized for pitch estimation, and we expand its
applications to both voiced and unvoiced regions. It is noted that
the accurate estimation of the fundamental frequency by the PE-
FAC algorithm is not critical, as it has only a limited role in building
the artificial pattern in the PDAS. Thus we can expand application
of the PEFAC to generate artificial pattern for both voiced and un-
voiced regions. Figure 1 shows the distinction between the PDAS
and phase difference in cases of speech under “clean and dry” con-
ditions and “noisy and reverberant” conditions.

In addition to using the PDAS to predict the direction of the
sound source, there is one more consideration for deep learning.
The mean square error (MSE) function is a well-known cost func-
tion in DNN regression-based applications, but it is practical only
when a dataset contains continous values. To overcome this issue,
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Figure 3: Simulated room configurations to generate a training
dataset for the proposed DNN regression model.

we utilize the two sinusoidal versions (i.e., sine and cosine) of the
PDAS. These are applicable in a DNN-based localization approach
using the MSE as a cost funtion since their values of them are con-
tinuous in range of [—1, 1].

We consider the sinusoidal versions of the PDAS as the input
and output data of a DNN, as shown in Figure 2. Thus, the di-
mension of the converted PDAS is twice of that of the PDAS (i.e.,
(K/2—1) x2). The network has three hidden layers, and each layer
has 2,048 nodes activated by the rectified linear unit. The linear unit
is utilized as the activation function of the output layer.

Finally, the sinusoidal versions of the PDAS estimated by the
DNN need to be changed into the PDAS estimate. By utilizing the
MATLAB built-in function, arctan 2(-), we can obtain the PDAS
estimate Aé;(k, m) as an enhanced spatial cue by the proposed
method. Similar to (5), the phase difference estimate A, (k,m)
can be finally obtained as below:

Ay (k,m) = A, (k,m) — “i. ©)
The DoA estimates for all the TF components can be obtained by
plugging Ag..(k, m) into (4). To determine the frame-by-frame di-
rections of a sound source, the peak of distribution of all the DoA
values within a specific time interval is calculated. It is noted that
the proposed algorithm only utilizes the estimated DoAs except fu-
ture values for on-line processing.

3. EXPERIMENTAL RESULTS

To verify the accuracy performance of the proposed algorithm in
cases of recorded audio files in real-world environments, we utilize
the LOCATA challenge dataset [24, 25]. We consider a wide range
of training data related to background noise, reverberations, and one
or two sound sources to ensure generalization of the DNN-based lo-
calization method. As shown in Figure 3, a small room (dimensions
of 3.5 x 3.5 x 2.5 m) simulated by the image method [26] is utilized
for generation of the training data samples. Two microphones are
located nearby the center of the room at (1.73 m, 1.75 m, 1.25 m)
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Table 1: Comparison of the performance of the algorithms for the
LOCATA development dataset Task I measured by the DICIT array.
Average azimuth estimate (Avg), standard deviation (SD), and aver-
age RMSE value in degrees obtained by the MUSIC (MU) [19] and
the proposed algorithm (PR). O and X represent the case with and
without, respectively, the inclusion of the perfect knowledge about
speech presence during the performance assessment.

recording 1 2 3
ground truth 58.0 -60.0 -21.3
assessment

with VAD X © X o X 0

Avg 39.6 | 48.6 | -353 | -42.7 | -22.0 | -27.3
MU SD 244 | 203 | 29.1 | 21.6 | 213 | 175
RMSE || 242 | 17.8 | 260 | 21.1 163 | 14.0

Avg 60.2 | 60.3 | -59.3 | -59.3 | -22.8 | -22.8
PR SD 26 | 3.0 0.8 0.9 1.6 1.8
RMSE || 29 | 3.2 0.9 0.9 1.9 2.0

and (1.77 m, 1.75 m, 1.25 m), whereas a static speaker is placed 1.5
m from the center of the microphone array from —90° to 90° at 10°
intervals.

A number of speech files of the TIMIT database were mixed
with three types of noise (Babble, Factory, and Volvo) obtained
from the NOISEX-92 database to simulate noisy environment. The
noises were generated as stereophonic signals as the speech wave
files but as diffuse signals according to the standard of [27]. Three
SNRs were used: 5, 10, and 15 dB. Both the speech and noise sig-
nals were sampled at 8§ kHz, and a 16 ms length window was applied
with the frame shift 8 ms. In addition, we considered several rever-
berations from O to 1.0 s at intervals of 0.2 s. Please note that we
applied large variations of environmental conditions related to the
number of sources, background noises, and reverberations in order
to improve the generalization performance of the proposed method.

We applied the proposed method to both the development
dataset and the evaluation dataset (i.e., the LOCATA challenge
dataset [24, 25]), especially Task 1 for a static source localization
using static microphones array. The development dataset includes
the ground truth angle and the perfect knowledge about speech pres-
ence for each recording, whereas the evaluation dataset does not
contain this information. Note that prior information about speech
presence regions is not exploited in localization. It is utilized only
in analyzing how accurately the proposed method predicts the di-
rectional angle in the case of the development dataset. Since we
utilize a dual microphone array with a distance of 4 cm for gener-
ating the training set, we can also extract stereophonic signals from
the DICIT array-recorded speech wave files (i.e., two stereophonic
wave files per each recording captured by the 6th, 7th and 7th, 9th
channel of the DICIT array with a same distance). Figure 4 shows
the localization results of the MUSIC algorithm [19] and those of
the proposed method using real-time processing for the develop-
ment dataset related to Task 1. As shown in Table 1, there is a sig-
nificant difference between the estimated results at each temporal
period in terms of the average DoA value, standard deviation, and
average RMSE of the estimated azimuth in degrees. The average
RMSE of the proposed method is much less than that of the MU-
SIC algorithm for all three recordings in 7ask 1. Furthermore, using
the proposed method, the standard deviation of the DoA estimates
is much less than that of the MUSIC algorithm. With regard to
the prediction of the directional angle, this finding implies that the
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Figure 4: Plots of the estimated azimuth angles (blue marks) and ground truth angles (red marks) according to the given time index for three
recordings of the LOCATA development dataset for Task I measured by the DICIT array. From top to bottom: sound waveform, azimuth
results of the MUSIC algorithm [19], and azimuth results of the proposed algorithm.

Table 2: Comparison of the performance of the algorithms for the LOCATA evaluation dataset for Task I measured by the DICIT array.
Average azimuth estimate and standard deviation in degrees obtained by the MUSIC [19] and proposed algorithm, without any information
about speech presence region.

recording [ 1 [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10 [ 11 [ 12 [ 13
Avg || 20.73 | 30.95 | -39.72 | 27.20 | -38.75 | -6.51 | 35.43 | -31.89 | 29.29 | -31.68 | 31.69 | -31.85 | 27.32

MU SD || 21.76 | 25.83 | 21.61 | 15.83 | 29.25 | 22.93 | 25.65 | 2691 | 18.12 | 23.68 | 29.73 | 30.49 | 22.13

PR Avg || 2323 | 52.24 | -56.66 | 32.05 | -38.48 | -7.56 | 47.23 | -53.36 | 2298 | -23.23 | 56.48 | -60.52 | 37.43

SD 7.09 | 7.81 2.70 2.63 1.81 | 2345 | 217 3.39 2.60 1.15 4.14 2.85 | 11.54
proposed method is more accurate in real-time as compared with the line approach with respect to the accuracy of DoA estimation. The
baseline approach when a loudspeaker is located in a fixed direction proposed method shows much smaller standard deviations for the
as a static sound source. The results of the evaluation dataset for estimated azimuth angles in real-time than those obtained by the
LOCATA Task 1 are shown in Table 2. This dataset has no ground MUSIC approach in both the development and evaluation datasets
truth information about the direction of the static source in each related to a static source localization task. Furthermore, for the de-
recording. Thus, we present only the results of the average azimuth velopment dataset, the RMSEs obtained using the proposed method

estimate and standard deviation for 13 recordings measured by the are much less than those obtained using the baseline algorithm.
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